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Abstract. We show how to obtain the quasiclassical evolution of a class of field theories 
called ultralocal fields. Coherent states that follow the ‘classical’ orbit as defined by 
Klauder’s weak correspondence principle and restricted action principle is explicitly shown 
to approximate the quantum evolution as h + 0. 

1. Introduction 

Ultralocal field theory studies a class of models which differ from relativistic theories 
by the absence of spatial gradients in the Hamiltonian, e.g. the term ( V 4 ) ’  for scalar 
fields. 

Exact operator solutions have already been obtained for these models [ 1,2] and 
they may well provide an alternative route to the perturbative study of quantum field 
theory where the spatial gradients are to be included as perturbations about the exact, 
ultralocal solutions. However, up to this date, no one has yet succeeded in finding a 
representation for the products of spatial derivatives in the context of ultralocal 
representations. 

Ultralocal field theory seems to be particularly appropriate for the study of strong 
coupling limits to relativistic field theories. For Yang-Mills fields this limit consists 
of dropping the magnetic field terms from the Hamiltonian, i.e. the terms containing 
spatial derivatives. Similarly, for general relativity, dropping the spatial scalar Ricci 
curvature term from the Hamiltonian generator can be considered as a strong coupling 
limit [3]. Although strong coupling Yang-Mills has been studied in the context of 
lattice gauge theory, this is not mandatory and application of ultralocal methods seems 
to be promising. The coordinate invariance of general relativity makes going to a 
lattice very unnatural and ultralocality ideas may prove to be a sound alternative to 
understand the quantised theory. 

In this paper we address the problem of determining a classical limit of an ultralocal 
scalar quantum field. The extension of these ideas to general relativity has already 
been worked out and can be found in [4]. Not only canonical but also affine [2] 
commutation relations will be discussed. The motivation for this kind of field lies in 
the fact that in some physical systems the dynamical variables are constrained one 
way or another. This is the case for example when one wants to restrict the spectrum 
of the field operator to the positive real line. Then canonical commutation relations 
are not suitable since the canonical momentum will not be self-adjoint under this 
restriction. General relativity exhibits this peculiarity since the metric tensor on a 
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Cauchy hypersurface must have definite signature. Thus for completeness we treat in 
this paper both affine and canonical fields. 

The paper is organised as follows. Section 1 contains an illustration of how one 
obtains classical limits in the context of quantum mechanics with the help of coherent 
states and the role of the weak correspondence principle (WCP) and the restricted 
action principle (RAP) when one tries to generalise these results to field theory. In Q 2 
we present a general discussion about ultralocal scalar fields. The representation we 
choose is specified by a kind of generalised Gaussian vacuum state as this is the most 
convenient way to construct coherent states. The evolution problem is tackled in 0 3 
and the coherent states as given by the WCP and RAP will be shown to approximate 
the evolution of the wavefunction as h + 0, in analogy with the quantum mechanics 
case. Section 4 contains a discussion and the conclusion. 

2. General remarks on classical limits 

2. I. Quantum mechanics 

We start by reviewing briefly in the context of quantum mechanics the methods on 
which we will base most of our discussion of taking the classical limit of ultralocal 
field theory. We work in finite dimensions for simplicity but the extension to two- 
dimensional boson scalar fields is found in Hepp [ 5 ] .  Our presentation will be mostly 
based on this reference (see also Klauder [ 6 ]  and the book by Thirring [7]). 

Consider a canonical system with the real Hamiltonian function 

W P ,  4) = p2/2m + V(q) (2.1) 
in the 2n-dimensional space R2" with ( p ,  q) E R2". If grad V =  G V is Lipschitz around 
q, then ?he canonical equations of motion 

m d t )  = p ( t )  l i ( t )  = -v V(q(t))  (2 .2a)  

always have a unique local solution for t E (-a, a ) ,  a > 0, with initial data 

(2.2b) 

The corresponding quantum mechanical problem 

ih(d/dt)+(x, t )  = &+(x, t )  = (-h2v2/2m + v(x))+(x, t> (2.3) 
in the Hilbert space H = L 2 ( R " )  with inner product (+, 4) = I  dx +*4 always has global 
solutions if the self-adjoint extensions of V 2  and V have a common dense domain D 
with ?( e ,  0) E D. This solution 

+ ( t )  = e x ~ [ - ( i / ~ ) $ s a t ~ + ( ~ )  = u(t)+(o) (2.4) 
is expressed in terms of any self-adjoint extension %'sa of the operator -h2V2/2m+ V .  
In the following we will not make any distinction between &' and %'sa. 

The discussion of the connection between (2.2) and (2.3) is as old as quantum 
mechanics itself [8]. Several methods have been devised to study this problem. The 
WKB method relates an asymptotic expansion of solutions of (2.3) for h + 0 to solutions 
of the Hamilton-Jacobi equation [9,10] for (2.2). (An application d t h e  WKB approxi- 
mation to the gravitational field can be found in the work of Gerlach [ll].) The 
Feyriman integral [ 121 appears to be a very flexible tool but its use is beyond the scope 
of this paper. The simplest connection between quantum and classical mechanics, 
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however, goes back to the Ehrenfest theorem [ 131: for every I,!J E D and V sufficiently 
reg u 1 a r 

(d/dt)(+(t) ,  QI,!J(t)) = ( l / m ) ( I , ! J ( t ) ,  & ( t ) )  

(dldt)(+(t) ,  & ( t ) )  = - ( & ( t ) , V  v+(t)) 
(2.5) 

where @ = -ihV and 6 = x. However, (2.5) does not define a solution of (2.2) since 
(+( t ) ,  V V+( t ) )  # V V( $( t ) ,  &I( t ) )  unless V is linear. In general only for h + 0 these 
expectation values define a solution to (2.2). An9ther yay to relate (2.5) and (2.2) 
when h + 0 is to use minimal uncertainty states for P and Q, i.e. coherent states [14,15]. 
Since coherent states provide the main tool for obtaining the quasiclassical approxima- 
tion for ultralocal fields in 0 3 we give below an idea of how the method works in 
one-dimensional quantum mechanics. 

In order to have the powers of h on the right place it is convenient to use a 
symmetric representation [ 51 of the CCR (canonical commutation relations) 

P** =G$ s** =JT;s* (2.6) 

U(-a)=exp(ai i*--a*i i )=expi(p~-q$)  (2.7) 

where$ = -i d/dx and 9 = x. Let -a = ( q  + ip)/J2 E C withp, q real parameters and define 

where â  = (4*+ip*)/J2. Using the Campbell-Hausdorff formula e"X e-' = 
X + [  Y ,  X]+(1/2!)[  Y ,  [ Y, XI]+. . . we obtain 

U(-a)*a*U(-a) = $+a.  (2.8) 

Equation (8) implies that in the coherent state 

la)= U(-a)lO) (2.9) 
with 610) = 0; for an arbitrary monomial in the ph and q,,, one has 

(2.10) 

As an aside notice that in some cases we have to assume that the vacuum state satisfies 
the factorisation property 

lim(ol$. . . $10) = (01(10). . . (Ol$lO) (2.11) 
h-0 

and (OlGlO) = O =  (Ol$lO) in order for (2.10) to hold (see Yaffe [ 16, 171). Hepp [5] shows 
that (2.10) is preserved under time evolution as given by U ( ? )  in (2.4), 

(2.12) 

as long as the classical orbit q( t ) ,  p (  t )  specified by (2) exists and V is of class C 3  and 
decreases sufficiently fast when 1x1 +CO. Equation (2.12) is the coherent state version 
of the Ehrenfest theorem in the classical limit. 

The fact that along coherent states the quantum mechanical evolution 

(h-1/2-ala*s(t)lh-'/2-a) 

and the classical evolution a ( t )  = (,-1/2-a(t)1iihlh-1/2-a(f)) are in 'weak corre- 
spondence', which becomes exact for h + 0 ,  has been analysed by Klauder [6] 
(here a*, ( t )  = U (  [)*a** U( t )  = (l/v'?)(& ( t )  + i$* ( t ) )  and a( t )  = (l/a)( q( t )  + ip( t ) ) ) .  
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However the only rigorous proof of this fact was given by Hepp. Under the same 
hypotheses underlying (2.12) he also proves the following important formula 

(2.13) 

This equation is constantly mentioned in Klauder's work [18] but never proven. He 
writes it as 

(2.14) 

where I P J ~ ) ,  qcl ( t ) )  = exp[-(i/fi)p,,(t)Cjl exp[( i / f i )qCl( t ) t ; l~~) ,  p o = p C l ( o ) ,  40' qcl(o); 
the subscript 'cl' refers to the classical orbit. 

There are some systems for which (14) is simply 

exp( --m ; - ) lP0, q o ) =  I P C d t ) ,  s d t ) ) .  (2.15) 

In these cases the initial coherent state is not deformed during the evolution but remains 
a coherent state along the classical orbit. Such systems are called exact systems. 

2.2. Generalisations to Jield theory 

The action principle leading to the Schrodinger equation (3) is based on the quantum 
action functional 

I($) = 1 d t ( W ) ,  i f i$( t ) -  2W)) (2.16) 

where the dot denotes the t derivative. If we replace IC, by a coherent state then the 
restricted action 

I ( P ,  4) = J- d M t ) ,  q ( t ) l ( i f i a l a t -  " ) ( t ) ,  s(tN (2.17) 

leads, upon arbitrary variation of p and q, to the classical equations of motion ( 2 . 2 ~ ) :  
this is the content of the restricted action principle [18], RAP. To arrive at this result 
just notice that (2.17) can be re-expressed as (assume (O/@/O) = 0 = (OlQlO)) 

(2.18) 

where? 

Then the extrema1 solutions to (2.18) are given by 

4 =awn q ) / a p  li = -awn 4 ) / Q  (2.20) 
where X (  p ,  q )  in this case is analogous to the classical Hamiltonian (2.1). This method 
of obtaining a relationship between quantum and classical systems will be explored 
in our discussion of ultralocal scalar fields in the following sense. 

t Whenever convenient we do not write explicitly the time dependence. 
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To any quantum system described by a Hamiltonian 2, a pair of conjugate variables 
and some vacuum state, we can associate a classical system such as (2.20). The only 
problem that might arise is to check whether (2.19) really defines a classical Hamil- 
tonian. This is not obvious when dealing with quantum field theory as we will do 
later. In fact a conjecture of Klaude; called weak correspondence principle [ 191, WCP, 
says that given a quantum generator 3 then the diagonal coherent state matrix elements 
of 3 have th,e form of the classical generator (as h + 0). Consider for instance a neutral 
scalar field 4 (x )  with canonical momentum &(x) in three-dimensional Euclidean space. 
Coherent states analogous to (2.9) are 

If; g) = Wf; g110) (2.21) 

(2.22) 

where f (x), g(x)  are infinitely differentiable smearing functions with compact support. 
Then one can show that the momentum, angular momentum and Hamiltonian operators 
have their classical counterparts as given by the WCP (we assume that these operajors 
annihilate the vacuum state). For example the momentum operator g k  = 

d3x 7j(x)Vk$(x) gives 

g k ( f ;  g)  (f; gl@klf; g)= d 3 x f ( x ) v 8 ( x )  (2.23) 

which is the classical generator. Note that the smearing functions are playing the role 
of classical fields. 

These considerations provide us with G framework for finding a formula analogous 
to (2.14) for ultralocal scalar fields in 0 3. We will make an assumption concerning 
the form of the vacuum (cf (3.20), (3.27)) and then show explicitly that when the 
smearing functions evolve according to the RAP with the Hamiltonian as given by the 
WCP, the evolution of the wavefunction can be approximated by coherent states as h + 0. 

3. Canonical and affine ultralocal fields 

In this section we review the essential aspect of ultralocal quantum field theories. 
Classically the ultralocal scalar field is obtained by taking the Hamiltonian 

d3x[i7r( x)’ + (V 4 ( x))’ + v( 4 ( x))] % = i 
and dropping the (VC#J)’ term to obtain 

X= d3x[;r(x)’+ V ( ~ ( X ) ) ] .  I (3.1) 

By dropping the spatial derivatives the evolution of the field at distinct spatial points 
is independent at all times. The light ‘cone’ at each x E R’ has collapsed to a timelike 
line passing through x. The main point is that the quantisation of the Hamiltonian 
(3.1) can be accomplished exactly, without being forced to take V ( 4 )  as a perturbation. 
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The quantum theory starts with the introduction of creation and annihilation 
operators A+(x,  A ) ,  A(x,  A ) ,  A ER, x e R 3  acting on some Hilbert space H and a unit 
norm state 10) E H, called vacuum state, such that 

[A(x, A),A’(x’, A ’ ) ] = ~ ( x - x ’ ) ~ ( A  - A ’ )  

[A, A] = O =  [A’, A+] 

(3.2) 

(3 .3)  

AIO) = 0. (3 .4)  

In addition we define the operators 

B ( x ,  A )  = A(x, A ) +  C(A) (3 .5 )  

where C(A) is a real valued function satisfying C(A) = C(-A) called modelfunction. 
We assume that the vacuum state 10) is cyclic [20]. 

An overcomplete set of states in H is formed by 

where $ E  h, the Hilbert space of square integrable functions of x and A, henceforth 
called small Hilbert space. Given the Hilbert space structure on h one infers a Hilbert 
space structure on H through the normalised inner product 

where ($, 4)  is some inner product in h and I/ 11 the associated norm. 
We wish to have operators acting on H satisfying canonical commutation relations. 

For the ultralocal representations that we are studying this is not always possible. The 
operator representations are [ 11 

+m 

4 ( x )  = 1 dA B’(x, A)AB(x,  A )  (3.8) 
--oo 

i i a  I, i ah 

+CO 

&(x)=  dA B’(x, A ) -  - B ( x ,  A )  (3 .9)  

satisfying 
‘ C O  

[$(x), &(x’)]=ih8(x-xXI) dA B’(x, A ) B ( x ’ ,  A ) .  (3.10) 

Up to the factor SdA R’B (which formally commutes with 6 and &), (3.8) and (3 .9)  
are canonically conjugate. For the most interesting representations (the irreducibles) 
one has dA C(A)’ = 00 and consequently dA BtB and G(x) are not well defined [ 11. 
The fact that the conjugate momentum is undefined makes using the WCP to obtain a 
classical limit for these theories more difficult. In fact we were unable to use the WCP 

in those cases where the model function is not square integrable and the discussion 
about canonical fields is concentrated on those models where the model function satisfy 

dA C(A)’ = M <a. The affine momentum however (see below) is well defined even 
when C is not square integrable. 

A consequence of the representation (8) of 6 is that the expectation functional 

L 

(3.11) 
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where f ( x )  is a differentiable function with compact support, satisfies the condition 

E(fIff2) = E(fl)E(f,) (3.12) 

for all fl and f2 with disjoint supports. This statistical independence of disjoint spatial 
volumes is the essence of ultralocality. In addition, the truncated Green functions are 
all proportional to products of S functions [l]. 

The representation of the Hamiltonian operator is given by 

$(x) = [ dh Bt(x, h)AB(x,  A )  ( 3 . 1 3 ~ )  

where 

A =  -$fi2a2/ah2+ v ( A ) .  

The potential v ( A )  is determined by the condition 

%IO) = 5 d3x $(x)/O) = 0 

which implies 

v ( h )  h 2 C " ( h ) / 2 C ( h ) .  

Observe that the operator A may also be written in the form 

A =  u+a 

with 

(3.13b) 

(3.14) 

(3.15) 

(3.16) 

h a 
Ji a h  

U =-c(A)-c(A)- ' .  

The matrix elemtnts of the Hamiltonian in the state I+) are particularly simple 

M $ ( x ) l + ?  = (+ 14)) [ dh +*(x, ! A + ' ( x ,  A 1. (3.17) 

The operator A acts only on the A dependence of 4 and not on its x dependence. The 
time evolution operator also has a simple action on I+) 

(3.18) 

From (3.18) it is clear that the dynamics in the field Hilbert space H reduces to that 
in the small Hilbert space h. In other words instead of doing quantum field theory in 
H we can equivalently do it in h. The simplicity of ultralocal field theory is to a large 
extent a consequence of this fact. 

The above discussion points out the important role played by the function C. It 
determines the form of the potential and whether or not 6 is a well defined operator. 
If C is square integrable then 7; is well defined and the representation is reducible. 
In addition the ground state is not unique. If  C is not square integrable and 1 h 2 ( A 2 +  
1)- 'C2(A) dh =CO then neither 4 nor 7; are well defined [l]. Thus we always assume 

A 2  ix 

dh C 2 - -  
A 2 + 1 -  N<oo' (3.19) 
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This condition also guarantees that (3.11) is well defined. An example of classes of 
square integrable and non-square-integrable model functions satisfying (3.19) are given 
respectively by 

(3.20~1, b) 

where y ( A )  is an even polynomial. For concreteness one could take 

y ( A )  =imA2.  (3.21) 

With (3.21) the potential (3.15) corresponding to (3.20) becomes, respectively, 

u ( A )  = - ih2 /A2+fm2A2-  mh v ( A )  = ~ h 2 / A 2 + ~ m 2 A 2 .  (3.22a, b) 

An alternative ultralocal theory that we will consider is based on the affine commuta- 
tion relations [2]. The basic structure is as above except t>at we wil! replace A with k 
which is restricted to k > 0. We will represent operators 4(x)  and K ( x )  satisfying the 
affine commutation relations 

(3.23) 

This is essentially the field version of the commutation relations of the Lie algebra of 
the affine group. 

[Ez(x), i ( x ’ ) ]  = i f i S ( x  - x f ) $ < x ) .  

The affine ultralocal operators are 

6 ( x )  = lox dk B + ( x ,  k ) k B ( x ,  k )  (3.24) 

h 2  k ( x ) = loa d k B+ ( x, k ) -( - k - k-$ B ( x, k ) . 
2i ak 

Observe that the spectrum of $(x)  is positive since k > 0. 
The Hamiltonian for the affine case is taken to be 

&(x) = dk B+(x,  k)AB(x ,  k )  i 
with 

a a h z ( a / a k k a / a k C )  
ak  ak C 

so that &lO)=O.  Following (3.206) we take the model function to be 

, $ = - h Z - k - +  

(3.25) 

( 3 . 2 6 ~ )  

(3.26b) 

(3.27) 

but in this case y ( k )  does not need to be even. As in the canonical case there is a 
singularity in the potential at k = 0 but this will cause no problem in applying the WCP 

and the RAP to obtain the quasiclassical approximation. 

4. Quasiclassical approximation 

A formula similar to (2.14) will be obtained for the affine field. Canonical commutation 
relations are treated later in this section. 
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Coherent states analogous to (2.9) are given by the following overcomplete set 

lP, 4 )  = W P ,  4110) (4.1) 

(4.2) U [ p ,  q ]  =exp ( -- i l  d3xq(x)$(x)) exp(+ 1 d3x I n p ( x ) k ( x ) )  

with p ( x )  > 0. The real smearing functions p ,  q defined on R3 will be taken to be 
infinitely differentiable and of *compact stpport. The unitary operators (4.2) expressed 
in terms of the affine fields &(x)  and K ( x )  constitute a representation in the field 
Hilbert space H of the affine group since U [ p ,  q ] U [ p ‘ ,  q’] = U [ p p ’ ,  q + p - ’ q ’ ]  (the 
affine group on R is a two-parameter, non-Abelian group, given by x --* a-’x + 6, Vx E R). 
Analogously when we work with canonical variables the unitary operators of the theory 
(see equation (4.36)) constitute a representation of the Heisenberg group in H. 

The restricted action for the states (4.1) reads 

= 1 dt(O1 exp( -: 1 d3x In pk) 1 d3y(44 - [b /p )k )  

where 5 @ = J d 3 x 2 ( x )  and %(x) is given by (3.26). To obtain such a result we have 
imposed 

(Ol$(X)lO) = 1 (4.4) 

and also we have used 

U+[P, q I ( G ( x ) + P k ( x ) )  W P ,  41 = . p ( x ) $ ( x ) +  P ( k ( x ) + p ( x ) s ( x ) $ ( x ) ) .  (4.5) 

Arbitrary variations with respect to p and q in (4.3) give the following ‘classical’ 
equations of motion for the smearing functions 

(4.6a, 6)  

where we have defined 

W P ,  9)  = (P, 41&, 9). (4.7) 

According to the RAP, (4.6) defines a suitable ‘classical’ orbit that can be used in 
quasiclassical approximations while, from the WCP, (4.7) is the corresponding ‘classical’ 
Hamiltonian. Thus we have all the necessary ingredients to approximate the evolution 
of a wavevector (3 .18) .  Before doing this it is convenient to compute in more detail 
the form of (4.7). 

Consider the derivative 
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so 

where the ‘potential’ W ( p )  is 

W (  p )  = %’( p ,  0) = (01 exp( -; 5 d3x In pk) &exp( ; 1 d3x In pk)lO) 

=(Ol{&+(-$ l d ’ x l n p [ & & ]  

1 +-( 2!  -i)2 15 d3x d3x’ In p In p’[k [k‘, &]I +, , .]IO) 

=(01{ &- h2 f 
(in ~ ( k ~ ( q 9 ~ l ~ ~ )  n - 1  

n! + h 2  2 11 d3x dk 
n = l  

= [I d3x dk(O/Bt(x, k ) A ( k p ) B ( x ,  k)10) 

= 11 d3x dkC(k)A(kp)C(k) 

(4.8) 

(4.9) 

and use has been made of egk‘j(k) = f ( k e g )  for differentiablef, g with 
be shown that, writing the operator A as 

a/ak.  It can 

A = a+a (4.10) 

for a = h & C ( k ) ( a / a k ) C ( k ) - ’ ,  (4.9) becomes 

W ( p )  = 11 d3x dkp-’IfiaC(kp-’)I2 

(4.11) 

The evolution (3.18) can be expressed in the small Hilbert space h as 

ex~[-(i /h)Atl$(x,  k )  = $(x, k, t ) .  (4.12) 

Coherent states in the small Hilbert space that approximate the RHS of (4.12) are 
obtained as follows. Since the states (3 .6)  are eigenstates of A, 

(4.13) 

the vector I $p, , )  of the Hilbert space H corresponding to a coherent state Ip, q) E H is 
determined by the following element of h:  

+p, , (x ,  k )  = e~p[-( i /h)q(x)kIp-”~(x)C(kp-’(x))  - C ( k )  (4.14) 

4 x 9  k)lrL) = Ilr(x, kil$) 

Gust compute A(x,  k ) l p ,  4 )  to obtain (LP,,(x, k ) l p ,  4 ) ) .  
The Schrodinger equation in h reads 

~ $ ( k ,  t )  = ih$(k, t )  (4.15) 
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where it is not necessary to write explicitly the x dependence since, due to ultralocality, 
the dynamics at the spatial point x1 is a copy of that at x2, for any xl, x2. Thus our 
problem has been reduced to 'quantum mechanics in k space'. When some initial 
condition is chosen, (4.15) is equivalent to (4.12). We will always assume that the 
initial state is a coherent state 

cLo(k) = IClpoJk) (4.16) 

with p o = p ( 0 ) ,  qo= q(0).  Observe that if we were dealing with an exact system then 
(4.16) would evolve to another coherent state and we could have written (4.15) as 

4 b , ¶ ( k )  = ih$p,q(k) (4.17) 

where the t dependence is entirely contained in p and q. For instance this kind of 
evolution occurs when the model function is constant. In general we will show that 
when C ( k )  has the form (3.27) then system (4.6) with Hamiltonian (4.8) 

4 c l  = d1f 8 W( PcJ/ 8Pc, (4.18 a )  

Iicl = -2PClqd (4.18 b )  

give, as R + 0, an approximate solution to the Schrodinger equation when we choose 
a suitable norm in the small Hilbert space. This is the main result of the paper and 
we state it as a theorem. 

Theorem. Suppose we have a set pcl( t ) ,  qcl( t )  of smearing functions whose evolution 
(4.18) defines a 'classical' orbit. Then coherent states (4.14) defined on this orbit satisfy 

(4.19) 

Sometimes one writes (4.19) loosely as 

h-0. 

~cLPc,(l),c?cl(f) = 1 ~ ~ P c 1 ~ 1 ) , q c d ~ ~  

or, equivalently, one says that the right-hand side of (4.12) is approximated by a 
coherent state defined on the 'classical' orbit 

h-0 
exp[( -i/ h ) A  ~ l c L p c l ~ o ) . ¶ c l ~ O )  - % c , ( l ) , ¶ c , ( f ) ~  (4.20) 

In order to prove the theorem we must first state what kind of norm should be 
used in the limit (4.19). The measure for this systemt is obtained from d p  = 
dkk- 'C2(k)  by a change of variable: d p p  = d k  k- 'C*(kp- ' )  (from (4.4) j r d p  k 2 =  1 ) .  
In what follows we use d p p  and the convergence in (4.19) is given in terms of the 
norm Ilcp 1 1 2  = d p p  (p*(p. Also the subscript 'cl' and the tk ie  dependence in pel( t ) ,  qcl( t )  
will not be written. 

t Among the measures of the form d u  = k - " C 2 ( k ) ,  the only one that will give sensible r e s u b  in the context 
of affine fields is the singular measure with n = 1. Anything more singular ( n  > 1) will imply that none of 
the integrals in (4.26) is well defined while anything less singular will lead to the conclusion that (4.19) is 
always true whether (4.18) is satisfied or not (to see this just use the same arguments that led to (4.28) and 
conclude that (4.26')  is always o ( h ) ) .  

In the case of canonical models any normalised measure d u  = NA"C'(h) dA, n 2 0 ,  can be used where 
N is some normalisation constant. However singular measures will imply that (4.41) is not well defined. 
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It is necessary now to express (4.18) in the small Hilbert space: 

lom dp k2( q - q 2 )  = lom d p  k2# 

where # is a representation of 6 W ( p ) / 6 p  in h. From (4.9), 

(4.21) 

m 

= lom dpp k2p-2(y’2 -y:p-’) + lo d p p  k2p-2(2kp-’(y’p - y b ) y ” )  

- 5  d p p  k2WP 

Cp = p - 2  WP 

and we obtain 
wP = y” - ~ f p - ~  + 2kp-’(y’p - yb)y” (4.22) 

where y = y (  k), y p  = y (  kp-’) and y‘, yb is the derivative with respect to k and kp-’ 
respectively. 

Thus (4.18) is equivalent to 

q - q 2 =  wp p = -2pq. (4.23~1, b) 

Using the Hamiltonian (3.26b) and the model (3.27) we have (set $E, = $,,, + C ) :  

R$,,, = ( - h 2 s k s +  h2C-’(sksC))+E, 

1 1  k 
= - h ’(s + k i 2 )  $E, + h2( - + kf2 - ; y”)  $Eq  

4k h 
r 

= [ h k ( y ; p P 2  - y”) + ( kq2 - 2iqkp-I~; + ky’2 - kyfp-2)]+~,  

i h & ,  = ih[-(i /h)qk-ip-’@- Cbp-2pkC;’]+E, 

= (qk + iybp-2pk)$E, 

where C, = C(kp-’). Thus 

ll&P,, - i h 4 p . q  II 

dpp{k2[h(Y;p-2-y”)+(q -q2+y‘2-ybp-2)]2 
= lo= 

+ k2[(2pq +P)ybP-2121. 

From (4.23b) 2pq + p  = 0 and, defining 

o( h )  = hA 2h  lom dpp  k2(y;p-2-y”)(q2- 4 + y ‘ 2 - y ’ 2  P P  ) 

o ( h 2 ) =  h 2 B =  h2  dppk2(y;p-2-y”)2 

(4.24) 

(4.25) 

(4.26) 
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with A and B well defined integrals, (4.26) becomes 

/ I A I ) ~ , ~  -ihi,bp,ql12= d p p  k 2 ( q 2 - q + y ’ 2 - y f p - 2 ) 2 + o ( h ) + o ( h 2 ) .  lom 
(4.26‘) 

From (4.22), (4.23a), 

The integral on the RHS of (4.27) is of order A’: 

I,’ dpp k2[2k(Y’P -y;)P-ly”I2 

f m  

= h2  J d k p 2 N ( A ) h  exp(-uz(hu))[2u(y’(hup)p-y’(hu))y”(hup)12 
0 

(4.28) 

where we defined a change of variable by setting h-’y( k )  = h-’kz(k) = uz( hu)  with 
hu = k ;  N ( h )  is a normalisation constant (from f d p  k 2 =  1 we conclude that 
N ( h ) h  exp(-uz(hu)) is of order zero and (28) is indeed o ( h 2 ) ) .  Thus 

llfwp,q - ifii,bPJ = 44) (4.29) 

and the theorem follows. 
These methods can be extended to the case of canonical models. However, as we 

will see, only square integrable model functions give sensible results; non-square 
integrable models seem to be incompatible with the WCP and RAP. 

Theorem. Suppose we have a set p ,  q of smearing functions evolving according to 

4 = W P ,  q ) l @  e =  -S%(P, q ) / Q  (4.30a, 6 )  

with 
+m 

(4.31) 

(4.32) 

Then 

f i i g l A l l p , q  -ifii,bp,qll = o  (4.33) 

where R is given by (3 .13b)  and 

l lp ,q=a e x p [ - ( i l h ) p h l C ( h + q ) - C ( A )  (4.34) 

is analogous to (4.14) ( a  phase CT = exp[-(i/2h) Ji d s p 2 ( s ) ]  has been included for later 
convenience); the model function is ( 3 . 2 0 ~ ) .  
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The Hamiltonian (4.31) is obtained from the WCP while the equations of motion 
(4.30) are obtained from the RAP. It is clear that when C(A) is not square integrable 
(4.30), (4.31) will not make sense (only when C is a constant can we ‘regularise’ these 
integrals and still obtain (4.30) from the WCP and the RAP; this very special choice was 
made in [4]). The coherent state (4.34) in the small Hilbert space is obtained from 

IP, 9 ) =  WP, SIIO) (4.35) 

by using the same arguments that led to (4.14). 

The theorem is proved by first rewriting (4.30) in the small Hilbert space: 

4 = P  p = wq (4.37a, b)  

where w, is a representation of f i W ( q ) / S q  in h. From (4.32), (3 .15) ,  (3.136), 

w ( q ) = j {  

where 

y = y ( A )  

and some odd integrands have been dropped. Changing variables, A + A + q, 

1 

1 

where y ,  = y ( A  + q )  and y‘, y ;  mean derivative with respect to A and A + q respectively. 
Thus 

1 

(4.38) 

Using (4.34), (3.136), (with +Eq = GP,, t C )  
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R = ( -; hZ; + ; h2 c - C")  *:, 

1 1 y:-,yb+,,) 1 iP 

1 1 
+ 2 ( P2 - 2iPYk + Y ' 2  - Y f )  CL;, (4.39) 

(4.40) 

(note that, due to the phase exp(-( i /h) j idsp2(s)) ,  there is a term $pz in (4.40)). 
Assuming from now on that d p  = C 2  dA is normalised we study the convergence (4.33) 
in terms of ((q112=ldpq*cp 

IIR%,, - i h&,, I/ ' 

Using (4.38), (4.37), 

lld%,q -ih4p,q/12 

(4.41) 

When squaring the integrand in (4.41) we can see that all terms are of order at least 
h2  (use the fact that y ( A )  is an even polynomial, so y ' ( A )  = X  a2nA2n-1, n > O ,  and, 
under a change of variable similar to that in (4.28), y ' (  hu)*"-' = Z a2n(  h ~ ) ~ " - '  is o( h ) ) .  
Thus we conclude 

l l ~ * p , q  - if&,, II = o( h ) .  

Thus the WCP and the RAP define a suitable 'classical' orbit upon which coherent 
states can be defined that will approximate, in the sense of norms in the small Hilbert 
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space, the quantum evolution of affine and canonical (square integrable) ultralocal 
fields for small R .  

5. Discussion and conclusions 

The simplicity of ultralocal field theory stems from the fact that we can work in the 
small Hilbert space with finite degrees of freedom instead of the field Hilbert space. 
We have seen that affine fields are less singular than canonical fields and that the 
approximation scheme in the small Hilbert space studied so far breaks down when 
non-square-integrable model functions are used in the canonical context. This is 
because we were unable to get rid of an infinity of the form dA C(A)’ which completely 
hinders the use of the WCP and the RAP to define the ‘classical’ orbit. 

The ideas presented in this paper have already been applied to some cosmological 
situations where the gravitational field exhibits a kind of spontaneously decoupled 
dynamics in the asymptotic region close to the initial singularity (the gravitational field 
is ultralocal in that region for a large class of solutions to Einstein field equations 
[21-231. Strong coupling Yang-Mills fields can also be treated as a n  ultralocal field 
and this topic will be tackled in a future publication. 

Although we recognise that the concept of ultralocality must be weakened in order 
that operators like (VC#J)’ be represented, the essential ideas proved to be a useful 
guideline for future developments in those theoretical contexts where ultralocality may 
be relevant. 
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